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Abstract—LoRa technology has been extensively implemented
in various IoT applications, offering widespread low-power
connectivity for millions of nodes across thousands of logical
channels. However, current LoRa networks lack an efficient
mechanism for monitoring channel activity across these numer-
ous channels, which prevents network operators from effectively
detecting physical layer activities and implementing additional
functionalities (e.g., channel access control). Existing solutions
either involve complex iterations over each logical channel or fail
to detect extremely weak packets in low SNR conditions. These
limitations affect their scalability and robustness in monitoring
the vast number of logical channels available in the LoRa
spectrum. To address this issue, this paper introduces SlideLoRa,
an innovative packet detection method that enables detection
across all logical channels under various channel conditions.
SlideLoRa consolidates the complete energy of LoRa symbols
using an expanded demodulation window combined with a fine-
grained sliding window, effectively reconstructing the distorted
frequency-domain information of LoRa packets. To achieve this,
SlideLoRa incorporates a series of novel solutions, including
peak tracking in low SNR, peak sequence matching, peak
extraction, and packet parameter retrieval. Experimental results
demonstrate that SlideLoRa enhances packet detection capability
by 1.7× compared to the state-of-the-art.

Index Terms—Low-Power Wide-Area Networks, LoRa, Chan-
nel Activity Detection, Cross-Channel.

I. INTRODUCTION

In recent years, Low-Power Wide-Area Networks (LP-

WANs) have become promising technologies for facilitating

widespread connectivity among numerous networked sensors.

This advancement supports a variety of IoT applications [1]–

[38]. LoRa, featuring its broad coverage and energy efficiency,

has been a dominating technology of LPWANs. Industry report

[39] indicates that the LoRaWAN ecosystem has connected

over 350 million LoRa nodes and 6.9 million gateways world-

wide. In many agricultural scenarios, a single LoRa gateway

typically serves a large number of LoRa devices within its

coverage area, such as sensors deployed across farmland.
To adapt to the ever-increasing scale of IoT networks, LoRa

offers thousands of available logical channels with diverse

and flexible configurations. Specifically, operating in the unli-

censed ISM band (e.g., US902-928 MHz), LoRa nodes can dy-

Fig. 1: SlideLoRa achieves high efficiency and reliability

to monitor massive logical channels with diverse channel

conditions.

namically select the central frequency and available bandwidth

(e.g., BW 7.8-500 kHz) to create over 200 physically separated

channels. Additionally, LoRa nodes configured with spreading

factors (e.g., SF 6-12) can transmit simultaneously on the

same frequency. With the narrowband physical channels and

orthogonal logical channels, LoRa is well-equipped to connect

a vast number of IoT nodes over thousands of available logical

channels, shedding light on highly concurrent and scalable IoT

connectivity.

The presence of thousands of logical channels presents

significant challenges for efficient monitoring of channel ac-

tivity. Currently, LoRa uses channel activity detection (CAD)

to identify activity on a dedicated logical channel, relying

on pre-configured channel information (e.g., bandwidth and

spreading factor). However, scaling CAD to handle thousands

of logical channels would require numerous iterations and

introduce substantial overhead, severely impacting network

operation efficiency. Although previous research has investi-

gated methods such as cross-channel detection [40] and wide-

band monitoring [41] to enable concurrent channel activity

monitoring, these studies overlook critical issues such as low-979-8-3315-0376-5/25/$31.00 ©2025 IEEE
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SNR packets and the near-far effect, which are common in

real-world outdoor deployments. Our empirical findings indi-

cate that the reliability of these prior approaches significantly

decreases (e.g., ∼60%) under conditions of high concurrency

and poor channel quality in practical outdoor settings. In

this paper, we ask the following question: Is it possible to
efficiently and reliably monitor the channel activity across
massive logical channels even under poor channel conditions?

To answer this question, we first examine why previous ap-

proaches lose reliability when handling massive LoRa packets

under poor channel conditions. We discover that prior works

[40], [41] adhere to the traditional LoRa packet detection

approach, which heavily depends on the periodicity of con-

secutive LoRa symbols for accurate packet detection. This

approach performs well when all channels exhibit similarly

high signal strengths but fails under poor channel conditions

such as low SNR and the near-far effect. One practical issue

arises since the symbols of weaker packets (overshadowed by

stronger packets) are often overlooked by traditional methods,

thus disrupting the periodicity of consecutive LoRa symbols.

The problem becomes increasingly challenging when con-

current logical channels with varying signal strengths are

also misaligned in time and frequency. Hence, we notice a

large gap in existing solutions to supporting reliable channel

detection across massive logical channels with diverse channel

conditions.

In this paper, we propose SlideLoRa, the first reliable and

efficient channel detection system for LoRa networks that

monitors all available logical channels with diverse channel

conditions. At the core of SlideLoRa is a novel peak feature

recovery technique that leverages the impact of window offset

on detection results to extract signal features of individual

LoRa symbols. By doing so, SlideLoRa can better adapt to

diverse channel conditions across massive available logical

channels for reliable and efficient detection.

However, implementing this idea into a practical system

faces substantial challenges. First, unlike previous works on

cross-channel detection, SlideLoRa aims to detect signals from

all logical channels in the ISM band under low SNR. This

is particularly challenging as poor channel conditions disrupt

the periodic characteristics of consecutive LoRa symbols in

both time and frequency domains. When packets with different

SNR levels are received simultaneously, those with stronger

energy dominate in the frequency domain, further distorting

the time and frequency domain characteristics of packets with

lower SNR levels. Furthermore, the inability to predefine chan-

nels to mitigate noise and interference from other channels

across the wideband spectrum even worsens SNR degradation.

As a result, it is crucially demanding for SlideLoRa to detect

and receive packets with high reliability and efficiency.

SlideLoRa introduces novel designs to achieve reliable and

efficient channel activity monitoring under diverse channel

conditions. We observe that although the carrier frequencies

and data rates (SF, BW) of packets from different channels

vary, LoRa signals with the same chirp slope (i.e., rate of

frequency change over time) can be dechirped simultaneously

using a chirp signal with the same chirp slope and the

maximum duration (e.g., SF11 and SF12). Built on such obser-

vations, SlideLoRa employs only two demodulation windows

(chirp signals corresponding to SF11 and SF12) to dechirp and

transform energy in the time domain into stable frequency-

domain features and detect packets across all channels. Note

also that different chirp profiles (e.g., variations in SF and

BW) show unique patterns across consecutive demodulation

windows. To mitigate the effects of low SNR and near-far in-

terference, SlideLoRa adopts a novel approach by introducing

a fine-grained sliding step, which allows SlideLoRa to track

the frequency variations of individual chirps across multiple

demodulation windows and identify all chirp profiles based

on their distinct variation patterns. Subsequently, SlideLoRa

detects the periodicity of multiple variation patterns to isolate

potential packets in the channels.

We implement and evaluate SlideLoRa with commercial-of-

the-shelf (COTS) LoRa nodes and Software Defined Radios

(SDR). Evaluations show that SlideLoRa achieves 1.7× higher

packet detection rate than the state-of-the-art (SOTA) in typical

outdoor deployments as shown in Figure1.

In summary, the main contributions of this paper are as

follows: (1) We propose SlideLoRa, the first system capable of

efficiently and reliably monitoring all logical channel activities

in a LoRa network under poor channel conditions and without

prior knowledge of incoming packets. (2) We introduce a

novel packet detection algorithm that fully consolidates the

energy of LoRa symbols and leverages multiple periodic

features of a single LoRa symbol in the frequency domain,

significantly improving detection reliability. (3) We implement

extensive experiments and evaluations in real-world outdoor

deployments. The experiment results show that SlideLoRa

successfully received 82 data packets, even under extremely

low SNR channel conditions, achieving a 1.7× higher packet

detection rate compared to baselines.

II. RELATED WORK

Many studies have focused on improving the performance

of LoRa networks from various perspectives [42]–[44] , such

as spectrum sensing, collision resolution, and packet recovery,

which are reviewed as related work in the sequel.

Spectrum Sensing. The goal of spectrum sensing is to

detect all potential LoRa packets in the wireless channel

[45], [46]. MALoRa [47] enhanced packet detection sensitivity

by extending the demodulation window. LoRadar [40] was

the first to propose cross-channel packet detection, using the

preamble format of LoRa packets to simultaneously iden-

tify cross-channel packets within limited bandwidth. XGate

[41] further developed novel solutions to detect all LoRa

packets in logical channels without any prior knowledge of

incoming packets. All these works require relatively good

channel conditions, which limits their applicability in real

practical scenarios. Unlike the previous work, SlideLoRa aims

to reliably detect all logical channels in the Rx spectrum under

low SNR conditions.
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Fig. 2: Physical and Logical Channels in the 915MHz ISM spectrum specified by LoRaWAN. Frequency points are divided

into physical channels, while different LoRa parameters define logical channels. Packets #1 (SF7, BW125kHz), #2 (SF9,

BW250kHz), and #3 (SF11, BW500kHz) overlap within a 500kHz bandwidth spectrum.

Collision Resolution. Collision resolution in LoRa net-

works leverages techniques from the physical or MAC layers

to fix the issue of packet collisions. At the physical level, Choir

exploits hardware imperfections of LoRa nodes to decode

colliding packets through unique frequency offsets. FTrack

[48], CoLoRa [49], NScale [50], and Pyramid [51] extracted

robust features from the time or frequency domain to separate

interfering packets. PCube [52] used multiple antennas at the

gateway to measure phase differences of colliding packets

and group them accordingly. MCLoRa [53] addressed cross-

channel packet collisions, which uses energy difference erasers

to separate packets from different logical channels. At the

MAC layer, LMAC [54] introduced CAD-based CSMA into

LoRa networks and significantly reduced packet collisions.

However, these studies focus primarily on resolving collisions

in a small number of known channels and are never designed

to cover all logical channels under poor channel conditions.

Packet Recovery under poor channel conditions. Packet

recovery employs various methods such as channel coherent

superposition [55], multi-gateway collaboration, and coding

features to restore damaged packets [56]. Charm [57] com-

bined signals from multiple LoRaWAN gateways in the cloud

to restore weak LoRa signals. OPR [58] analyzed erroneous

packets from various gateways in the cloud, trying all pos-

sible bit arrangements to restore packet integrity. CPR [59]

coherently consolidated FFT results from multiple gateways

in the cloud to decode packets below the noise floor. XCopy

[60] constructed a combination of signal copies from the

same node to achieve ultra-low SNR packet decoding. Despite

the performance improvement from these works, they have

concentrated only on packet recovery in a single logical

channel, without considering SNR loss caused by multiple

logical channel superposition.

III. MOTIVATION

This section begins with a brief introduction to the LoRa

physical layer. Subsequently, an analysis is presented on the

feasibility of despreading multiple distinct logical channels

by expanding the demodulation window. Then we discuss the

advantages and disadvantages of performing dechirp with an

expanded demodulation window to motivate our design.

A. LoRa Background

LoRa Physical Layer. LoRa adopts CSS modulation tech-

nology. Specifically, the frequency of a LoRa symbol increases

or decreases linearly over time, with the initial frequency of

each symbol representing the modulated data. For instance,

a symbol encoding the data “00” is a base up-chirp with an

initial frequency of zero, with its frequency increasing from

−BW/2 to BW/2. Conversely, a symbol encoding “11” is

a data up-chirp with an initial frequency of f0. When the

frequency exceeds BW/2, it returns to −BW/2 and continues

to increase linearly at the same slope.

Physical & Logical Channel. LoRaWAN [61] divides the

spectrum (e.g., Sub-1GHz ISM band) into multiple channels.

These channels, which do not overlap or interfere with each

other, are termed physical channels. Currently, commercial

LoRa gateways (such as SX1302 [62] or SX1303 [63]) can

support simultaneous decoding of up to 8 such physical

channels.

In LoRa modulation, chirps can have different changing

slopes, defining logical channels as shown in Figure 2. That is

because when two LoRa chirps with different slopes are trans-

mitted concurrently in the aforementioned physical channel,

they will be dispersed into multiple FFT bins after despreading

due to their different slopes. This allows the two LoRa chirps

to be demodulated without mutual interference.

B. Dechirp-based Concurrent Packet Detection

This section explains how downchirps with identical slopes

enable the simultaneous detection of data packets from distinct

logical channels. Assuming, without loss of generality, the

presence of multiple LoRa packets, let the i-th packet be

characterized by a central frequency fi, bandwidth BWi, and

spreading factor SFi. Consequently, a base upchirp for each

packet can be expressed as:

C(SFi, BWi, t) = e
j2π

(
−BWi

2 +
ki
2 t

)
t
, t ∈ (0, Ti], (1)

where ki =
BW 2

i

2SFi
is the slope of the linear frequency increase

for each base upchirp, and Ti is the symbol duration for that

upchirp. A symbol within the packet can then be denoted as:

S(fi, f0, t) = ej2πf0t · C(SFi, BWi, t), t ∈ (0, Ti], (2)
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where f0 represents the initial frequency offset encoding the

modulated data.

From Eq.(2), it can be observed that if, for example, the
bandwidth doubles while the spreading factor increases by
two, the resulting chirps will possess the same slope ki despite

their differing bandwidths and spreading factors. To better

understand the detection process, consider a scenario where

the gateway receives two LoRa data packets, packet #1 and

packet #2, which share an identical chirp slope k̂. Assume

packet #2 has twice the symbol duration of packet #1. The

received superimposed signal y(t) can be represented as:

y(t) =

⎧⎪⎪⎨
⎪⎪⎩

C(SF1, BW1, t1)
+ C(SF2, BW2, t2)

t ∈ (0, T1]

C(SF1, BW1, t1 + T1)
+ C(SF2, BW2, t2)

t ∈ (T1, T2]

, (3)

where SF1, BW1, T1 and SF2, BW2, T2 are the spreading

factor, bandwidth, and symbol duration for packet #1 and

packet #2, respectively. When the gateway employs the base

downchirp conj(C(SF2, BW2, t2)) to dechirp y(t), followed

by a FFT, the result is:

F{y(t) ∗ conj(C(SF2, BW2, t2))} =

d1DN1(k) + d1DN1(k +
N1

2
) + d2DN2(k), (4)

where F· denotes the FFT operation, and N1 and N2 are

the number of samples per symbol for packet #1 and packet

#2, respectively. DNx
(k) represents the Dirichlet kernel, with

DN1(k) = sin(kπN1/N2)
sin(kπ/N2)

and DN2(k) = sin(kπ)
sin(kπ/N2)

, having

peak heights proportional to N1 and N2 respectively. The

terms d1 = e−j(kπN1)/N2 and d2 = e−jkπ are phase factors.

Eq. (4) is pivotal because it shows that a base downchirp

with a longer symbol duration but the same slope can si-

multaneously despread base upchirps from multiple packets.

In particular, consecutive base upchirps with shorter symbol

durations (e.g., those in packet #1) are despread together in

a single dechirp operation, producing two distinct peaks for

packet #1 in the FFT output. Importantly, the signal strength

for each packet is preserved in this process.

C. Why No SNR Loss

As established in Section III-B, specifically by Eq.(4), when

two data packets (packet #1 and packet #2) are dechirped using

the base downchirp corresponding to packet #2, the FFT output

reveals distinct spectral peaks. For packet #1, two such peaks

appear, located at frequency bins k = 0 (superimposed with a

peak from packet #2) and k = −N1/2.

Preservation of Signal Strength. The critical observation

from Eq.(4) is that both Dirichlet kernels associated with

packet #1 (i.e., DN1(k) at k = 0 and DN1(k + N1/2) at

k = −N1/2) achieve a peak height proportional to N1. N1

represents the total number of samples in a single symbol

of packet #1. This signifies that the dechirp operation, even

when using the longer demodulation window of packet #2,

effectively concentrates the energy of each symbol from packet

#1 into a distinct spectral peak of magnitude comparable to

that achieved by ideal matched filtering.

To illustrate further, consider the standard dechirping

of packet #1 using its own matched base downchirp

conj(C(SF1, BW1, t1)):

F{C(SF1, BW1, t1) · conj(C(SF1, BW1, t1))}
≈ d′1DN1(k), (5)

where this peak also has a height proportional to N1. By

comparing this ideal scenario with Eq.(4), we see that our pro-

posed method preserves the individual symbol signal strength

for packet #1, as evidenced by the peak heights remaining

proportional to N1. Similarly, packet #2’s signal energy is

concentrated into a peak of height proportional to N2. Thus,

the signal component of the SNR is maintained for each

detected symbol.

Noise Considerations. The LoRa waveform inherently pos-

sesses a processing gain, which is a key factor in its ability

to operate under low SNR conditions. This processing gain

arises from the despreading operation (multiplication by the

reference chirp followed by FFT).

When the received signal y(t) (which includes addi-

tive noise, n(t)) is multiplied by the local downchirp

conj(C(SF2, BW2, t2)), the signal components are coher-

ently integrated (despread) into narrow peaks in the frequency

domain, as shown in Eq.(4). Additive White Gaussian Noise

(AWGN), on the other hand, is generally uncorrelated with the

reference chirp. While the multiplication and FFT operations

transform the noise, the despreading process tends to spread

the noise energy across the entire frequency band, or at least

does not concentrate it in the same way as the signal.

The effective noise power in the narrow frequency bin

occupied by the signal peak is therefore significantly lower

than the total noise power across the entire bandwidth. The

use of a longer dechirp window does not fundamentally alter

this property for the shorter symbols of packet #1, as each

symbol of packet #1 still correlates over its respective duration

T1 to produce a peak of height N1. The processing gain for

each symbol of packet #1 effectively remains tied to its own

parameters (SF1, BW1).

Building on the above, we enable the gateway to detect

LoRa packets from different channels simultaneously by en-

larging the demodulation window for dechirping. By analyzing

the FFT output of each demodulation window and applying

peak-tracking techniques, we can identify the characteristic

peak sequence patterns of each packet for detection. The

following section details how these peak sequence patterns

are extracted for packets across different channels.

IV. SYSTEM DESIGN

A. Overview

Traditional LoRa gateways detect packets through correla-

tion of preambles in a known target logical channel. However,

correlation detection requires knowing all the meta information
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Fig. 3: The workflow of SlideLoRa. SlideLoRa classifies LoRa symbols, detected from different logical channels with unknown

channel states using varying slope demodulation windows, for standard LoRa decoding.
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(b) FFT results after dechirp operation in 8 consecutive demodulation windows.

Fig. 4: (a) Packet detection using fine-grained demodulation window shifting. (b) The red peaks originate from the same LoRa

symbol and maintain a stable, fixed offset in the FFT results across consecutive windows.

of each packet (e.g., center frequency, SF, and BW) before-

hand. This contradicts the original intention of this paper,

which aims to enhance the flexibility of channel selection for

each node. We observe that, before correlation detection is per-

formed in COTS gateways, the entire received spectrum is low-

pass filtered to narrow the signal to the target bandwidth (e.g.,

BW 62.5-500 kHz). This step aims to eliminate out-of-band

noise interference but also limits the gateway’s ability to si-

multaneously detect multiple logical channels. Fortunately, we

discover that another packet detection operation can effectively

address this problem. Specifically, the dechirp-based packet

detection method detects the arrival of packets by observing

whether the same FFT bin appears in multiple consecutive

demodulation windows. Most importantly, this method can

detect packets without filtering the entire spectrum. However,

this raises an important question: can the dechirp-based packet

detection method be extended to simultaneously detect all

potential packets across the entire frequency band?

To answer this question, in this section, we develop novel

solutions to concurrently detect multiple packets with different

spreading factors and bandwidths in the signal under low SNR

without any prior knowledge of incoming packets. As shown

in Figure 3, we break down the packet detection process into

four steps: 1) Symbol peak tracking: We continuously track

the variation patterns of multiple peaks within consecutive

windows and extract peaks from the same symbol to form a

peak sequence. 2) Peak sequence matching: We identify robust

features of the symbols of the same packet in both frequency

and time domains and match multiple peak sequences. 3) LoRa

parameters extracting: Using the matched peak sequences,

we calculate the packet’s SF and bandwidth by combining

multiple peak sequences. 4) Window aligning and frequency

evaluating: To facilitate direct decoding by the decoder, we

align multiple packets in both frequency and time domains.

To ensure accurate packet detection in low SNR en-

vironments, we thoroughly examine the characteristics of

LoRa symbols in the frequency domain and craft three anti-

interference algorithms (detailed in section IV-C) tailored to

these characteristics to enhance the reliability of our method.

B. Packet Detection over Cross-channel

In this section, we start with a packet and analyze the pattern

of peaks from the same symbol in consecutive demodulation

windows to construct a peak sequence based on this pattern.
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We then match multiple peak sequences to detect packets.

Subsequently, we extract the LoRa parameters (SF and band-

width) of a packet from its multiple peak sequences. Finally,

to achieve precise decoding by the decoder, we align the

demodulation windows in both frequency and time domains

and calculate the carrier frequency offset for each packet.

Symbol Peak Tracking. Through the analysis in Section

III-C, we have observed that using a base downchirp with the

same slope can simultaneously dechirp multiple base upchirps.

When the demodulation window contains all sampling points

of a chirp, the SNR loss introduced by the dechirp operation

is minimal. Theoretically, we can detect packets by observing

whether the same FFT bin exists in consecutive demodulation

windows. However, in extremely low SNR scenarios, peak

extraction is prone to distortion. This is due to unpredictable

shifts in FFT bins with lower energy and the potential misiden-

tification of sidelobes from other high-energy FFT bins as

peaks. If peak distortion occurs in any of the consecutive

windows, it leads to packet detection failure. In other words,

when using the dechirp method for packet detection, it is

challenging to detect low-SNR packets using a coarse-grained

step size.

To address this issue, as shown in Figure 4, we reduce the

step size of the demodulation window to α times (0 < α < 1)
its original value:

Δn = αN, (6)

where N is the total sample number of demodulation

window. Δn represents the number of sampling points the

demodulation window slide. According to the properties of

the Fourier transform, FFT bins from the same base upchirp

will follow this pattern in the frequency domain due to the

movement of the demodulation window as follows:

Δbin =
Δn×Δf

Δω
. (7)

Here, Δf = BW
N is the frequency shift caused by one

sampling point, and Δω = BW
2SF is the spectral line interval

of the FFT result.

We record the index, value, and window number of

k-th peak in the FFT results, denoted as peakk =
{index, value, number}. Subsequently, based on Eq.(7), we

track peaks that differ by Δbin in consecutive demodula-

tion windows and group them into the same peak sequence

PS = {peak1, peak2, · · · peakk}. We continually create new

peak sequences or update existing ones in each FFT round

until no peaks remain in the FFT results.

Peak Sequence Matching. After tracking peak se-

quences, we attempt to match them. We represent peak

sequences composed of adjacent base upchirps from a

packet as PSx = {peak1, peak2, · · · peakk} and PSx+1 =
{peak′

1, peak′2, · · · peak′
k}. Peak sequences originating from

the preamble of the same packet exhibit the following char-

acteristics: peaks at the same relative position across all

such sequences (e.g., peak1 in one sequence and peak′1 in

another) tend to have approximately identical index, value,

t

Symbol #1 Symbol #2 Symbol #3
Symbol #4

Freq

(a) Illustration of peak sequences for different symbols(Symbol
#1 ∼ #4) from the same packet.

t

A
bs

. F
FT

nmax

(b) Illustration of nmax peaks.

Fig. 5: Illustration of SlideLoRa extracting the peak sequence

of a single LoRa symbol: (a) In consecutive demodulation

windows, a single LoRa symbol generates multiple peaks in

the frequency domain; (b)nmax peaks are extracted from the

unique peak sequence obtained by recording the peaks of

Symbol #1 across consecutive demodulation windows.

and number attributes, with their value following a consistent

variation pattern across sequences, as illustrated in Figure 5.

Within any single peak sequence, consecutive peaks (e.g.,

peak1 and peak2) have index values differing by Δbin and

number values differing by 1.Based on these characteristics,

we match multiple peak sequences. When more than 4 peak

sequences are assigned to the same packet, we consider the

packet successfully detected.

LoRa Parameter Extracting. After detecting a packet, to

facilitate subsequent decoding operations, we need to further

analyze the LoRa parameters of this packet, such as SF

and BW. Traditional packet detection methods use a base

downchirp with the same symbol duration as the target packet

as the demodulation window. Once a packet is detected, its SF

and BW are identical to those of the base downchirp used.

However, SlideLoRa consistently use a base downchirp with

the maximum symbol duration (i.e., SF of 11 or 12) to detect

packets. Consequently, we need to adopt a novel approach

to extract LoRa parameters. Our method is based on a key

insight: symbols with different LoRa parameters have varying

durations, resulting in significant differences in the time that

the entire symbol remains within the demodulation window

during the sliding process as shown in Figure 6.

We quantify this characteristic using the following formula:

nmax =
1

α

(
Nw

Nt
− 1

)
+ 1, (8)

where nmax represents the number of peaks whose values

are approximately equal to the maximum peak value M in

the sequence (Figure 5b). Here, approximately means that the
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Fig. 6: (a) Compound signals of packet #1 in(SF8, BW125kHz), packet #2 (SF10, BW250kHz) and packet #3 in (SF12,

BW500kHz); (b-c) Separating collided packets: SlideLoRa leverages distinct peak tracking sequences of different SFs to

separate collided packets.

peak value lies within the range [M(1−α), M(1+α)], where

α is the step-to-window ratio defined in Eq.(6).

From Eq.(8), we can deduce that as the step size of demod-

ulation window decreases, the characteristics distinguishing

symbols with different LoRa parameters become more promi-

nent. This enhances our ability to correctly identify different

LoRa parameters even under low SNR conditions. However,

a smaller step size implies a higher computational overhead.

To balance the system’s detection performance and overhead,

based on our experimental results, we typically set α to 16.

Summary: We extract the LoRa parameters of the packet

from the peak sequence through different nmax. In LoRa

modulation, each symbol is represented by its initial frequency.

If the demodulation window is misaligned at the level of

sampling points, symbol decoding may fail. The preamble

of a LoRa packet serves primarily to enable packet detection

and to align the demodulation window before decoding the

payload. However, under low-SNR channel conditions, the

preamble can be severely degraded by noise, introducing

additional challenges. In particular, the received signal may

contain multiple overlapping LoRa packets that exhibit the

following characteristics:

Window Alignment and Frequency Evaluation. In LoRa

modulation, each symbol is represented by its initial frequency.

If the demodulation window is misaligned at the level of

sampling points, symbol decoding may fail. The preamble

of a LoRa packet serves primarily to enable packet detection

and to align the demodulation window before decoding the

payload. However, under low-SNR channel conditions, the

preamble can be severely degraded by noise, introducing

additional challenges. In particular, the received signal may

contain multiple overlapping LoRa packets that exhibit the

following characteristics:

1) Heterogeneity of Center Frequencies: Different LoRa

nodes may operate on different center frequencies, as they

select physical and logical channels based on channel

availability and link conditions.

2) Time Asynchrony: Packets from different nodes may

arrive at the gateway at significantly different times

due to independent transmissions and varying wireless

propagation paths, resulting in asynchronous arrivals.

3) Diversity of Carrier Frequency Offsets: Hardware imper-

fections in individual LoRa nodes cause each transmitted

packet to exhibit a distinct carrier frequency offset.

By discretizing Eq.(2) and setting aside noise considera-

tions, we examine how three primary characteristics determine

the structure of the LoRa received signal:

Si(fi, f0 + fcfo, n+Δn) =

ej2π(fi+f0+fcfo)(n+Δn)·C(SFi, BWi, n+Δn), n ∈ (0, Ni],
(9)

where Ni is the number of sampling points of the i-th
LoRa symbol, and Δn = �Δn� + Δnλ is the shift of the

demodulation window, consisting of two parts: an integer part

�Δn� and a fractional part Δnλ. The integer part �Δn� causes

significant frequency shifts, leading to decoding failure, while

the fractional part Δnλ introduces a linear phase shift to the

peaks, which has a negligible impact on the decoding result.

fcfo is the carrier frequency offset for each packet, and its

effect on the demodulation result is similar to that of fi.
We consider fcfo that causes integer bin shifts into fi for

processing and separately estimate the minor fcfo. Similar

to previous works [50], [51], we divide the demodulation

window alignment and frequency calibration into coarse and

fine alignment and calibration steps. Considering that Δn
has opposite effects on base upchirps and downchirps in

the preamble, while fi and fcfo have similar effects, we

estimate Δn and fi by combining the peak sequences of

base upchirps and downchirps. Note that peaks with lower

heights are susceptible to noise or sidelobes, so we use the

nmax highest peaks from the peak sequence for estimation.

After obtaining the values of Δn and fi, we compensate

the window for coarse alignment and frequency calibration.

Subsequently, we perform another round of dechirp operation
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Fig. 7: The impact of multiple packets. (a) Peak Regression Algorithm. Approximates missing peaks using existing peak

sequence information. (b) Dynamic Constraint for Peak Matching Algorithm. Lower energy peaks are more susceptible to

interference, so appropriate matching constraints are selected based on energy levels.

using a demodulation window aligned with the symbol du-

ration of the packet. To improve frequency resolution, zero-

padding is applied to the FFT operation to precisely locate the

true peak. Finally, we extract the fractional part of the peaks

produced by each base upchirp and average them to determine

the CFO.

C. Robust Detection on Concurrent packet

In Section IV-B, we provided a detailed explanation of

the single packet detection process. This section will discuss

how the gateway decodes packets with various slopes when

multiple nodes transmit data simultaneously. In conventional

LoRa packet transmission, different SF and BW create quasi-

orthogonal logical channels. During detection, we treat LoRa

packets with different slopes as quasi-orthogonal channels and

concurrently detect those with the same slope. In practice,

we use 10 different demodulation window sizes with different

slope to detect all types of LoRa packets.

However, when the received signal contains LoRa symbols

with the same slope and their physical channels significantly

overlap, strong inter-packet interference can occur, leading

to detection failures. Figure 6 illustrates a scenario where

multiple LoRa symbols with the same slope appear within

the demodulation window. To improve our method’s detection

performance under low SNR and packet collision conditions,

we propose the following three algorithms.

Peak Regression. As shown in Figure6a, under the near-

far effect, LoRa symbols with the same slope but different

SFs can easily generate cross-channel interference, causing

packet detection to fail for signals with weaker energy. We

observe that this is because, during the peak tracking process,

some peaks are lost. As shown in Figure7a, we refer back to

previous FFT results and compare peak heights and indices

across several preceding windows to perform cross-window

matching. Finally, we combine multiple FFT results to fit the

sequence {peaki, . . . , peakj}, thereby recovering the actual

peak sequence. Dynamic Constraint for Peak Matching. The

process of peak tracking involves determining the difference

between the peak indices of the FFT results from two consecu-

tive demodulation windows, referred to as Δbin′. When Δbin′

9 
m

9 
m

Node:
SX1272MB2DAS
915 MHZ antenna
NULEO-L476RG
Power Supply

Gateway:
USRP N210

915 MHZ antenna
Thinkpad Laptop

0.9 km

0.
76

 k
m

20 m

Fig. 8: Testbed settings of SlideLoRa.

satisfies the rule of Eq.(7), that is, d = Δbin′ − Δbin = 0,

we consider these two peaks to belong to the same LoRa

symbol. However, under low SNR conditions, peak indices

are very fragile and susceptible to noise or other high-energy

peaks, causing the peak index to deviate from the ideal value.

Therefore, during the peak matching process, we first calculate

the energy ratio of this peak RX[k] as shown below.

RX[k] =
X[k]∑NF

n=1,n �=k X[n]
, (10)

where NF is the number of bins in the FFT, and X[·]
represents the height of the corresponding peak in the FFT

results. If the value of RX[k] is relatively small, we set

d to a larger value, thereby allowing a dynamic difference

between peak indices and improving the success rate of peak

tracking. Note that the setting of d will affect the number of

packets detected simultaneously and the accuracy of detection.

Therefore, to balance the two, we usually set it in the range of

[1, 20] in practice. Dynamic Threshold-based Iterative Peak
Extraction. To better adapt to varying channel conditions,

inspired by previous work [51], we also resort to an iterative

peak extraction algorithm along with a dynamic threshold-

based peak search method. The basic principle involves first

identifying the largest peak in the FFT results and then

defining a dynamic threshold θ = M + 4σ, where M is the
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Fig. 9: The impact of multiple concurrent packets with different SNRs on performance.

mean and σ is the variance of the FFT results. During each

iteration of peak extraction, if the maximum value obtained in

this round exceeds θ, it is identified as a peak. Subsequently,

this maximum value and its surrounding peaks are removed

from the FFT results. The threshold θ is then recalculated and

updated for the next round of peak extraction. This iterative

process continues until the maximum value is less than θ, at

which point peak extraction is considered complete.

V. EVALUATION

A. Methodology

Gateway. We utilize the USRP N210 software-defined

radio platform as a LoRa gateway, implementing its functions

through an open-source project [64]. The USRP N210 receives

signals from all LoRa nodes at a sampling rate 2MHz, and the

physical layer samples are imported into Matlab for offline

analysis.

LoRa Nodes. As shown in Figure 8, we deploy LoRa

nodes at 20 different locations, each equipped with an

SX1272MB2DAS module [65] and an NULEO-L476RG de-

velopment board. All nodes operate in the 914–916 MHz

frequency band, with bandwidths ranging from 62.5 kHz to

500 kHz, and SF chosen arbitrarily from 6 to 12, transmitting

across 240 logical channels configured through combinations

of 32×62.5 kHz, 16×125 kHz, 8×250 kHz, and 4×500 kHz

bandwidths with all spreading factors (SF6–SF12). To enable

concurrent transmissions, a dedicated trigger node first broad-

casts a trigger packet on a predefined channel; upon reception,

all nodes randomly select one of the 240 logical channels to

transmit their packets, following the method in [46].

Metrics. We evaluate the performance of SlideLoRa with

the following metrics: (1) the number of received packets,

which represents the total count of successfully received pack-

ets, (2) Packet Detection Rate (PDR), defined as the ratio of

correctly detected packets to the total transmitted packets, (3)

Symbol Error Rate (SER), which measures the proportion of

incorrectly decoded symbols to the total transmitted symbols,

and (4) different levels of SNRs, which reflect the quality of

the signal environment during packet reception.

Baselines.We compare SlideLoRa with four baselines on

channel activity monitoring for LoRa. (1) LoRaWAN [61] uses

CAD to detect on pre-configured channel; (2) MALoRa [47]

applies multi-antenna to improve sensitivity; (3) LoRadar [40]

leverages cross-channel detection to detect multiple logical

channels simultaneously; (4) XGate [41] detects LoRa packets

with diverse configurations across a wide frequency band.

B. Performance of SlideLoRa under different SNRs

We evaluated SlideLoRa against benchmarks across three

SNR conditions. LoRaWAN and MALoRa, limited by pre-

configured channels and lacking cross-channel detection, re-

ceived at most 8 packets (Fig. 9). With 200 concurrent packets,

SlideLoRa received 136 packets, representing a 17× gain over

LoRaWAN/MALoRa. At SNR = 10dB (Fig. 9a), SlideLoRa

detects up to 136 packets, compared with 24 for LoRadar

and 112 for XGate, yielding 5.67× and 1.21× improvements,

respectively. At SNR = 0dB (Fig. 9b), the maxima are 104

(SlideLoRa), 10 (LoRadar), and 78 (XGate), i.e., 10.4× and

1.33× gains over the two benchmarks. At SNR = −10 dB
(Fig. 9c), packets with SF < 8 become undecodable due to

LoRa’s modulation limits at such low SNR. In such extreme

low-SNR conditions, LoRadar, XGate, and SlideLoRa decode

up to 8, 48, and 82 packets, corresponding to 10.25× and

1.7× improvements for SlideLoRa.

C. Performance of SlideLoRa under near-far effect

This experiment assessed PDR under near-far conditions,

where gateway-received SNR varies due to node distance and

environment. Nodes adjusted SF/BW for successful communi-

cation. Received SNRs were grouped: high (> 0 dB; typically

SF=7/8), low (-10∼0 dB), and extremely low (< -10 dB;

typically SF=11/12). We collected 10-90 concurrent packets

per SNR group, totaling 30-270. Figure 10 shows SlideLoRa,

XGate, and LoRadar performance. As expected, high-SNR

packet PDR gradually decreased with rising concurrency. With

90 concurrent packets per SNR group (270 total), SlideLoRa

maintained >80% PDR for high-SNR packets (Figure 10a).

Lower SNR packets had lower PDR due to high-energy packet

interference suppressing their weaker frequency-domain peaks.

Yet, with 270 concurrent packets, SlideLoRa achieved 50%

PDR for low-SNR and 37% for extremely low-SNR packets,

compared to XGate (25% and 15%) and LoRadar (0% and

0%). SlideLoRa’s advantage lies in its unique design: beyond
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(d) Extremely Low SNR

Fig. 10: Near-far effect on packets with different SNR levels. (a) Overall performance of averaged PDR. (b-d) PDRs for packets

with high SNR (> 0 dB), low SNR (0 ∼ -10 dB), and extremely low SNR (< -10 dB), respectively.
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Fig. 11: Performance of SlideLoRa with different ratio of

sliding step size.
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Fig. 12: Preamble computation overhead ratio of SlideLoRa.

preamble periodicity, it uses a fine-grained sliding window to

capture distinct peak patterns for varied SF/BW configurations.

This enables superior separation of packets with disparate

energy levels, significantly improving detection.

D. Microbenchmarks

Impacts of different step sizes of the slide. We evaluate

SlideLoRa ’s packet detection under different sliding step

size ratios α in a high-concurrency scenario (>180 packets).

A smaller α means finer sliding granularity. As shown in

Fig. 11, reducing α from 1/4 to 1/32 significantly improves

detection performance; at α = 1/32, detection remains above

80% even with 160 concurrent packets. In contrast, larger

steps (e.g., α = 1/4) cause performance to drop sharply, as

detection degrades to conventional LoRa’s periodic upchirp

method, reducing sensitivity in complex high-concurrency

environments.

Computation Overhead of SlideLoRa. We define the

detection computation ratio as the computation in the pream-

ble detection stage divided by the number of packets de-

tected in a single detection sweep. We compare this ratio for

SlideLoRa (α = 1/8) and LoRaWAN over a 2 MHz band

with concurrent packets (BW 62.5–500 kHz, SF 7–12). In

LoRaWAN, each packet requires its own preamble detection,

so the ratio remains almost constant regardless of the number

of concurrent packets. In contrast, SlideLoRa performs a

single, more computationally intensive preamble detection—

about 1/α times the cost of LoRaWAN’s—that can detect all

concurrent packets in the same slope group. When the number

of concurrent packets is small, this extra cost is not amortized,

resulting in a much higher ratio. As concurrency increases,

the detection cost is distributed across more packets, and the

per-packet detection computation ratio decreases rapidly. At

32 concurrent packets, SlideLoRa’s ratio becomes lower than

that of LoRaWAN.

VI. CONCLUSION

This paper presents SlideLoRa, a reliable and efficient

system for monitoring channel activity across massive logical

channels in LoRa networks under poor channel conditions.

By leveraging a fine-grained sliding demodulation window

and innovative peak feature recovery techniques, SlideLoRa

effectively detects packets without any prior knowledge of

incoming packets’ configurations, even in extremely low SNR

(< -10 dB) environments. Extensive real-world experiments

demonstrate that SlideLoRa achieves a 1.7× improvement

in packet detection compared to benchmark methods, sig-

nificantly enhancing the scalability and reliability of LoRa

networks for large-scale IoT deployments.
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